
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6215 67

An Enhanced Reliable and Protective Method for

flexible distributed Storage in Cloud Computing

B. Durgalakshmi
1
, S. Rakoth Kandan

2

Research Scholar, School of Computing Science, VIT University, Chennai, Tamil Nadu, India
1

Research Scholar, Dept. of CSE, Annamalai University, Chidambaram, Tamil Nadu, India
2

Abstract: Cloud applications can utilize the file management system without the trouble of fixings. We are detaching

some guarantee contingency against the regularity and availability in the cloud environment. We propose in this paper

to enhance the flexible distributed storage with very lightweight communication and computation cost. It does not only

ensure strong cloud storage, but also achieves fast data error localization. The proposed design further supports secure

and efficient dynamic operations on outsourced data including block modification, deletion, and append[3][4]. Analysis

shows the proposed scheme is highly efficient and flexible against Byzantine failure, malicious data modification

attack, and even server colluding attacks.

Keywords: Trustworthy, Cloud storage, Key generation, Token Generation.

I. INTRODUCTION

We investigate the problem of data security in cloud data

storage, which is essentially a distributed storage system.

Cloud computing is the use of computing resources

(hardware and software) that are delivered as a service

over a network (typically the Internet). The name comes

from the use of a cloud-shaped symbol as an abstraction

for the complex infrastructure it contains in system

diagram (figure 1). Cloud computing entrusts remote

services with a user's data, software and computation.

Cloud computing is basically a resource that you can

utilize online to maintain your business‟ platform while

you worry about other basic assets about your business. It

basically changes how online developers meet their

criteria for their IT software. Cloud computing is always

advancing and changing each year so that it will work

better for personal uses and business uses.

Fig. 1. Cloud storage service architecture

We are having the Third-Party Auditor (TPA) for the

purpose of authentication between the users, cloud servers

and Service Level Agreement (SLA) that is a negotiated

agreement between two parties, where one is the user and

the other is the service provider. This can be a legally

binding formal or an informal contract (Ex: Internal

department relationships). Contracts between the service

provider and other third-party auditors are often called

SLAs – because the level of service has been set by the

customer, there will be no "agreement" between third

parties these agreements we can say simply a "contract."

Our scheme supports an effective and flexible distributed

scheme with explicit dynamic data support, including

block update, delete, and append operations.

II. PROBLEM STATEMENT

2.1 System Model

We use three different network entities as illustrated in the

Figure 1

User: Data to be stored in the cloud environment and used

for data storage and computation can be enterprise by a

user.

Cloud Server (CS): An entity to provide data storage

service and has sufficient storage space and computation

resources. It is managed by cloud service provider.

Third-Party Auditor: A TPA, who has capabilities that

users may not have, is hope to apprise and expose risk of

cloud storage services on behalf of the users upon request.

As users it is difficult to maintain their data for long time,

it is important to ensure that their data are correctly stored

and maintained. By implementing the service-level

agreement in cloud environment we can ensure that data

are maintained securely. Some time the user don‟t have

time to maintain the data so it may be hacked by any other

http://thesaurus.com/browse/contingency

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6215 68

person to avoid that we are using here (TPA) Third-Party

Auditor for security purposes.

1) In existing systems it only provide binary form of

results about storage status across the distributed servers

we propose in this paper a flexible distributed storage

integrity auditing mechanism, utilizing the homomorphic

token[7] and distributed erasure-coded data[6][8].

2) The proposed design allows users to audit the cloud

storage with very lightweight communication and

computation cost.

3) The new scheme further supports secure and efficient

dynamic operations on data blocks, including: update,

delete, and append.

4) Our scheme is resilient against Byzantine failure,

malicious data modification attack, and even server

colluding attacks.

2.2 Impugn Model

From user‟s aspect, the impugn model has to find out all

kinds of threats toward his cloud data honestness. Because

here we are dealing with the two types of attackers:

Internal and External attacks. For internal attacks, a CSP

will be self-interested, untrusted, and possibly malicious,

usually this internal attackers are hacking at the time of

they are dealing with that data this type of attacking is

entirely depends on internal persons who are all working

in one organization and also it may also attempt to keep

secrecy of a data loss incident due to management errors,

Byzantine failures, and some other things. For external

attacks, data loss will be entirely come from the outsiders

who are all having the capability of control the cloud

service provider for example, some attackers will consider

about the money. They may be reduce the total capacity of

accessing the storage of cloud servers and also modifying

users data but this cannot be identified by cloud service

provider.

2.3 Design Goals

In cloud data storage for assuring the safety measure and

regularity for under the previous impugn model, we focus

to design efficient mechanisms for dynamic data

verification and operation and achieve the following goals:

1. Storage correctness: To ensure users that their data are

indeed stored appropriately and kept intact all the time in

the cloud.

2. Fast localization of data error: To effectively locate the

malfunctioning server when data corruption has been

detected.

3. Dynamic data support: To maintain the same level of

storage correctness assurance even if users modify, delete,

or append their data files in the cloud.

4. Dependability: To enhance data availability against

Byzantine failures, malicious data modification and server

colluding attacks, i.e., minimizing the effect brought by

data errors or server failures.

5. Lightweight: To enable users to perform storage

correctness checks with minimum overhead.

III. SYSTEM FORMATION

Fig. 2. AaaS, SaaS, PaaS, and IaaS

3.1 Putting Server Access Restore Point and Time

Management

To avoid server failure in every data inclusion or any other

activity by unauthorized person or any internal and

external attack coming into the CSP address domain, one

server access point or restore point is given to the cloud

server when the client is doing some delete, modification,

and append operations in his will. This is a new technique

that we have introduced in our system design. The reason

for which we want to do this restore point is that if there is

any server failure and crash then, this restore access point

helps a lot to recover everything that we have lost before

that crash time itself. This process is proceeded by fixing

one access point to server database (it is done with the

help of CSP, because we don‟t have any copy of our

outsourced data) when we finally finish our data exchange

in cloud server. Also since we don‟t have any physical

possession of our data in cloud server we can‟t have any

separate login access using cryptographic key [1] for that.

It is a major drawback to our cloud server to maintain our

individual or group data. In the days to come, it can be

rectified with the help of CSP. Here one time management

is fixed in cloud database management with the help of

CSP‟s access or automatically in server failure when user

stores, deletes, modifies and appends the data and this time

management is used to know the restore access point

easily by CSP and clients when servers meet such failure.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6215 69

3.2 File Distribution Preparation

3.2.1 File Encode

It is well known that erasure-correcting code may be used

to tolerate multiple failures in distributed storage systems.

In cloud data storage, we rely on this technique to disperse

the data file F redundantly across a set of n=m+k

distributed servers. An (m,k) Reed-Solomon erasure-

correcting code is used to create k redundancy parity

vectors from m data vectors in such a way that the original

m data vectors can be reconstructed from any m out of the

m + k data and parity vectors. By placing each of the m +

k vectors on a different server, the original data file can

survive the failure of any k of the m+k servers without any

data loss, with a space overhead of m+k. For support of

efficient sequential I/O to the original file, our file layout

is systematic, i.e., the unmodified m data file vectors

together with k parity vectors is distributed across m+k

different servers.

Let F=(F1,F2,…..,Fm) and Fi= (F1i, F2i, ….,Fli)
T
 Here, T

(shorthand for transpose) denotes that each Fi is

represented as a column vector, and l denotes data vector

size in blocks. All these blocks are elements of GF(2p).

The systematic layout with parity vectors is achieved with

the information dispersal matrix A, derived from an m ×

(m+k) vandermonde matrix.

where βj (j∈ {1,,,,n)}) are distinct elements randomly

picked from GF(2Þ). After a sequence of elementary row

transformations, the desired matrix A can be derived as

Where, I is a m x m identity matrix and P is the secret

parity generation matrix with size m x k. Note that A is

derived from a Vandermonde matrix, thus it has the

property that any m out of the m + k columns form an

invertible matrix. By using F and P, the user obtains the

encoded file

R = F X P, Where R is a matrix of order m x k that is

derived by multiplying F and P.

G = (F1, F2,….. Fm, R1, R2, … Rk)

Where, Fi denotes data blocks, 1 ≤ i ≤ m

Rj denotes jth column of matrix R, 1 ≤ j ≤ k

3.2.2 Token Precomputation

In order to achieve assurance of data storage correctness

and data error localization simultaneously, our scheme

entirely relies on the precomputed verification tokens. The

main idea is as follows: Before file distribution the user

precomputes a certain number of short verification tokens

on individual vector, G(j) (j∈ {1…n)}) where, j =

1 to n , each token covering a random subset of data

blocks. Later, when the user wants to make sure the

storage correctness for the data in the cloud, he challenges

the cloud servers with a set of randomly generated block

indices. Upon receiving challenge, each cloud server

computes a short “signature” over the specified blocks and

returns them to the user. The values of these signatures

should match the corresponding tokens precomputed by

the user. Meanwhile, as all servers operate over the same

subset of the indices, the requested response values for

integrity check must also be a valid codeword determined

by the secret matrix P.

Suppose the user wants to challenge the CS for „t‟ times to

ensure the correctness of data storage, then, he must

compute t verification tokens for each G(j) (j∈ {1…n)}),

using a PRF f(.) , a PRP Ø(.), a challenge key kchal, and a

master permutation key KPRP. Specifically, to generate

the ith token for the server j, the user acts as follows:

1. Derive a random challenge value αi of GF(2p) by αi= f

kchal (i) and a permutation key kprp(i) based on KPRP.

2. Compute the set of r randomly-chosen indices

{Iq∈ [1,,,,,,,, l]|1 ≤ q ≤ r} , where Iq = Øk pr p(i) (q)

3. Calculate the token as

 r

vi (j) = Σ qαi + G(j) [Iq],

 q=1

Where G(j) [Iq] = gIq(j)

Note that vi
(j)

, which is an element of GF(2
p
) with small

size, is the response the user expects to receive from server

j when he challenges it on the specified data blocks. After

token generation, the user has the choice of either keeping

the precomputed tokens locally or storing them in

encrypted form on the cloud servers. In our case here, the

user stores them locally to obviate the need for encryption

and lower the bandwidth overhead during dynamic data

operation which will be discussed shortly. The details of

token generation are shown in the following algorithm.

ALGORITHM: Token_Precomputation (G)

{

/*

INPUT:

G – Encoded File.

Kchal – A challenge key.

Kprp – Key for a master permutation.

n – Number of distributed servers.

t – Number of tokens.

FUNCTIONS:

f () – Pseudorandom Function (PRF)

Ø () – Pseudorandom Permutation (PRP)

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6215 70

OUTPUT:

Vi – Tokens.

*/

for j=1 to n do // for each vector

{

for i=1 to t do //for each round

 {

 αi = f kchal (i) and kprp(i)

r

vi (j) = Σ qαi + G(j) [Øk pr p(i) (q)]

q=1

 }

}

 }

Once all tokens are computed, the final step before file

distribution is to blind each parity block gi
(j)

 in

 (G
(m+1)

,……., G
(n)

) by

gi
(j)

 ← gi
(j)

 + f kj (sij) , i ∈ {1….. l },

Where kj is the secret key for parity vector G(j),(

j∈{m+1,….., n}). This is for protection of the secret

matrix P. After blinding the parity information, the user

disperses all the n encoded vectors G(j) across the cloud

servers S1,S2, . . . ,Sn.

For verifying Correctness and localizing errors the

algorithm CHALLENGE () that is proposed in [1] can be

used.

3.2.3 File Renovation

The user can reconstruct the original file by downloading

the data vectors from the first m servers, assuming that

they return the correct response values. That our

verification scheme is based on random spot-checking, so

the storage correctness assurance is a probabilistic one.

IV. DATA BLOCK DYNAMIC PROCESS

In our proposed system we can ensure our data will be

protected by doing the following operations such as

append, deletion, and update. These are some operations

performed by an user in the cloud environment.

4.1 Append Operation in Server Block

In this operation we assume that a user having some GB of

memory space allotted by a service provider for the user

application purposes. CSP will not restrict a user to access

for particular applications and user can access any kind of

applications also, The service provider is to provide all

kind of access to a user. The user can include some data

with existing data, change some data or remove some data

because of this we can give assurance to the data

integrity[5]. It is very efficient method in our proposed

design compared to any other such type.

4.2 Deletion Operation in Server Block

In this deletion operation, the user has to compare his data

with the existing servers‟ data. After this process, user

may perform the deletion operation which is shown in

Figure 3. If there is number of servers for data selection

while deleting the data that are stored in the particular

storage server is considered for this. The required data can

be deleted[1].

4.3 Update Operation in Server Block
In cloud data storage, a user may need to modify some

data block(s) stored in the cloud, from its current value fij

to a new one, fij + Δfij. This operation is referred as data

update. Figure 3 gives the high level logical representation

of data block update. Due to the linear property of Reed-

Solomon code, a user can perform the update operation

and generate the updated parity blocks by usingΔ fij alone,

without involving any other unchanged blocks.

V. EFFICIENCY ANALYSIS

5.1 Efficiency of File Encoding

The content of file F is encoded and stored in G by adding

the first „m‟ columns of F to G and the next „k‟ columns

are multiplied with the matrix P and appended in G.

Time taken to multiply Fm+1..n with P is calculated as

M(m)

5.2 Efficiency of Token Precomputation

 To distribute the file in cloud environment „n‟ vectors are

generated and „t‟ tokens are generated for each vector. We

propose a method to increase the efficiency of the

algorithm that is proposed in [1] for token precomputation.

In general, since the multiplication is performed as

repeated addition the time taken for multiplication

operation is more than the addition operation.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6215 71

Similarly exponentiation is performed as repeated

multiplication, so the time taken by exponentiation is more

than multiplication. We use multiplication instead of

exponentiation and addition instead of multiplication to

increase the efficiency. Definitely this change will not

affect the security aspect of the data and also correctness

will be maintained.

VI. CONCLUSION

In this paper, we analyze the problem of data security in

cloud data storage, which is essentially a distributed

storage system. To achieve the assurances of cloud data

integrity and availability and enforce the quality of

dependable cloud storage service for users, we propose an

enhanced effective and flexible scheme with unambiguous

dynamic data support, including block update, delete, and

append. We rely on erasure-correcting code in the file

distribution preparation to provide redundancy parity

vectors and guarantee the data reliability. By utilizing the

homomorphic token with distributed verification of

erasure coded data, our scheme achieves the integration of

storage correctness insurance and data error localization.

ACKNOWLEDGMENT

The authors gratefully acknowledge the authorities of

Annamalai University and VIT University for the facilities

offered to carry out this work.

REFERENCES

[1] C.Wang, Q.Wang, K.Ren, Ning Cao, and W.Lou, “Toward Secure

and Dependable Storage Services in Cloud Computing” IEEE
Services Computing, Vol. 5, No. 2, April-June 2012.

[2] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring Data Storage

Security in Cloud Computing,” Proc. 17th Int‟l Workshop Quality
of Service (IWQoS ‟09), pp. 1-9, July 2009.

[3] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik, “Scalable

and Efficient Provable Data Possession,” Proc. Fourth Int‟l
Conf.Security and in Comm. Netowrks (SecureComm ‟08), pp. 1-

10, 2008.

[4] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamics for Storage Security in Cloud

Computing,” Proc. 14th European Conf. Research in Computer

Security (ESORICS ‟09), pp. 355-370, 2009.
[5] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic

Provable Data Possession,” Proc. 16th ACM Conf. Computer and

Comm. Security (CCS ‟09), pp. 213-222, 2009.
[6] T. Schwarz and E.L. Miller, “Store, Forget, and Check: Using

Algebraic Signatures to Check Remotely Administered Storage,”

Proc. IEEE Int‟l Conf. Distributed Computing Systems (ICDCS
‟06), pp. 12-12, 2006.

[7] L. Carter and M. Wegman, “Universal Hash Functions,”

J.Computer and System Sciences, vol. 18, no. 2, pp. 143-154, 1979.
[8] J. Hendricks, G. Ganger, and M. Reiter, “Verifying Distributed

Erasure-Coded Data,” Proc. 26th ACM Symp. Principles of

Distributed Computing, pp. 139-146, 2007.

